Abstracts – Browse Results

Search or browse again.

Click on the titles below to expand the information about each abstract.
Viewing 5 results ...

Bonyad, R, Hamzenejad, M and Khanmohammadi, M (2018) Ranking the regenerative architecture indicators for assessment of research-educational building projects in Tehran, Iran. Smart and Sustainable Built Environment, 9(01), 27–37.

Burton, C A, Ryan, C, Rismanchi, B and Candy, S (2019) Urban shared energy systems and behaviour change - simulating a common pooled resource problem. Smart and Sustainable Built Environment, 9(01), 17–26.

Guven, H and Tanik, A (2018) Water-energy nexus. Smart and Sustainable Built Environment, 9(01), 54–70.

Papageorgiou, G and Demetriou, G (2020) Investigating learning and diffusion strategies for sustainable mobility. Smart and Sustainable Built Environment, 9(01), 1–16.

Sarker, R I, Mailer, M and Sikder, S K (2019) Walking to a public transport station. Smart and Sustainable Built Environment, 9(01), 38–53.

  • Type: Journal Article
  • Keywords: Spatial analysis; Accessibility; Urban structure; Urban fabric; Public transport; Walking behaviour;
  • ISBN/ISSN: 2046-6099
  • URL: https://doi.org/10.1108/SASBE-07-2017-0031
  • Abstract:
    The purpose of this paper is to explore the actual walking distance to public transport (PuT) stations and to report passenger perceptions on route choice. Design/methodology/approach A systematic case study has been conducted after administrating a tailor-made paper-based intercept survey in a German city (Munich). It can determine the interrelation between the accessibility of the transit service and evaluation on walking distance acceptance. Statistical analysis and geo-spatial approach were completed for obtaining major findings. Findings Statistical and geo-spatial analysis shows that respondents living in low-density areas walk longer than residents living in nearby inner city areas. In terms of PuT modes, residents walk longer for suburban train and subway/metro (U-Bahn) than for bus/tram services. Transit users accept a longer walking distance to reach a train station than other PuT modes and they choose the most direct and quickest route to reach PuT stations. Research limitations/implications Findings of this study would help to formulate future strategies and standards for the sustainable planning of public transportation systems in the context of Munich and many other cities around the globe with similar conditions. However, future research should be conducted using a large-scale survey for evaluating the comprehensive picture of walking patterns to PuT stations. Accessibility to PuT stations can also be modeled and evaluated by adopting open data and voluntary social media information. Unfortunately, this study only presents a partial evaluation of walking focused on accessibility at selected PuT stations in different settings of the urban fabric. Social implications This empirical study can be considered as an initial finding in the favor of the city transport authority to provide a design scale for improved accessibility of transit users; however, further investigation should be conducted using a large-scale survey for evaluating the comprehensive walking patterns. Originality/value A systematic case study has been conducted after administrating a tailor-made paper-based intercept survey in a German city (Munich). Findings of this study would help to formulate future strategies and standard for the sustainable planning of the public transportation system in the context of Munich and many other cities in the globe with similar conditions.